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Rigorous, Multimode Equivalent Network

Representation of Capacitive

Discontinuities
Marco Guglielmi and. Alejandro Alvarez Melc6n

Abstract-In this paper we present novel, rigorous, multimode
equivalent network representations for a variety of zero-thickness

capacitive windows and obstacles in a parallel plate waveguide. A
key feature of these representations is that the coupling between

all of the modes excited is described by a matrix whose elements
do not depend on frequency or absolute dimenswns. The value of
the results presented is that the networks developed can be used
to analyze rigorously a large variety of single and coupled planar
transmission line structures.

I. INTRODUCTION

sEVERAL equivalent network representations for capaci-

tive discontinuities are available in the technical literature

in terms of impedance (or admittance) equivalent networks

([1], Ch. 6.1.5) [2]–[3]. The equivalent network representa-

tions are very useful, when they can be used, because they are

extremely efficient from a computational point of view. Most

of the network representations that are available, however,

only involve fundamental modes and thus have very limited

validity.

In a multimode situation, it would be nice to be able

to retain the computational efficiency of the impedance (or

admittance) networks and still perform a full-wave analysis.

The results given in [3] do allow the development of a true

multimode equivalent network, but a general network form

is not given and the applications discussed are limited to

cases in which only the first higher-order mode is explicitly

included. Recently, we derived a set of multimode equivalent

network representations for inductive discontinuities [4]. The

networks derived were rigorous, could be applied to arbitrary

geometries, and could easily account for an arbitrary number

of higher-order modes.

In this paper, the procedure used in [4] is suitably modi-

fied and applied to the analysis of zero-thickness capacitive

obstacles and windows in a parallel-plate waveguide. The

key component of the network representations derived is an

impedance (or admittance) multimode coupling matrix whose

elements are obtained in terms of the solution of an integral

equation. The solution of this equation is shown to be known

so that rigorous expressions for the matrix elements are

derived.
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A salient feature of this approach is that the inte,gral

equations derived, and therefore also the coupling matrices,

do not depend on frequency or absolute dimensions. The com-

putations of the coupling matrix elements thus only involve

geometrical parameters that need to be computed only cmce
for each given geometry. The analysis of the structures over a

specific frequency range is then carried out via simple network

computations that can be performed very rapidly even on small

computers.

In this paper, the electromagnetic formulation of the prob-

lem is discussed together with the mathematical procedure

that leads to the final expressions of the coupling matrix

elements. The discontinuities analyzed in the paper are the

single and double strip, and the single and double aperture, as

shown in Fig. 1. However, the same procedure can be wsed

to obtain network representations for an arbitrary number of

strips or apertures as well. Numerical results are presented

comparing the results of computations carried out using the

networks developed in this paper and the ones obtained

using the networks available in the technical literature. ‘The

convergence properties of the solutions developed are Ialso

discussed indicating how, in addition to being very accurate,

the networks developed are also very rapidly convergent.

The value of the results presented in this paper is in that

they can be used to develop very efficient codes for the full-

wave analysis of a large variety of single and coupled planar

transmission line structures.

Single Strip ‘ Double Stri~

,,
Y

Single Gap Double Gap’

Fig. 1. Metallic, zero-thickness capacitive discontinuities for which rigorous
multimode equivalent network representations are derived.
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II. SINGLE STRIP

To setup a multimode equivalent network representation for

the single strip case, we recognize that since the discontinuity

is uniform in the z direction of Fig. 1, to solve the problem

we only need to study the discontinuity with the excitation

at normal incidence (km = O). Once a network representation

is derived, the result for the general case with k. # O can

be easily obtained by following the procedure outlined in [5].

The excitation is chosen to be TM with respect to z so that

only TM~ modes will be excited. The relevant vector mode

functions can be found in [6], and the characteristic modal

impedance is given by

(1)

where the superscript (n) indicates z <0 or z z O for n = 1

or n = 2, respectively. It is important to note at this stage

that, for m ~ cm, the modal characteristic impedance takes

the form

lim 2$) = ‘~(mr’b)
m+m we $)

o

(2)

The first step of the formulation is the expansion of the total

transverse electric field in terms of the modes of the parallel

plate waveguide, obtaining

(3)

The next step is the imposition of the boundary conditions on

the metal strip, namely,

(4)
‘rn=o

Let us now observe the behavior of the terms being summed

in (4) for m ~ co, namely,

(5)

where constant B is given by

bwe.
.,

and the minus sign on the right-hand side of (5) is a con-

sequence of the assumption that the excitation consists of an

arbitrary but finite set of TM modes so that, for m ~ cc,

only reflected contributions are present.

As will be evident later, it is now convenient to add to and

subtract from (4) the term

then add the resulting equations to each other and obtain, with

a few manipulations, the following expression:

m Cx2

~ Vmem(y) = ~ 7m ‘B ‘m(Y) (8)
Tn=o mxl 6:1) + 6$2)

(n)
where the modal voltage and currents V~ ‘n) haveand In

been redefined according to

~(l) _&) = ~m (9)

mB
vm+7m —Jl) ~:2)

=Vm. (lo)

The next step in the solution of the problem is the use in (8)

of the transform relation between the transverse magnetic field

at the discontinuity location and the modal currents, obtaining

The above expression can now be used in (8), obtaining

Note that, in writing this last equation, we have changed,

for convenience, the index of the summation from m to n in

the right-hand side of (8).

Due to the linearity of the problem, we can define a set of

unknown functions Mm which are related to the transverse

magnetic field via

( )2_zo ~ #1) _ #% = VmAoMm(I/) (13)
m=o

where AO is a vector constant to be defined later.

Inserting (13) in (12), and comparing like coefficients, the

following integral equation is finally obtained:

The completion of the network formulation is obtained by

substituting expression (13) intQ (11), finding

m

-J

d~
T.. ~vm AOMm(y’) . e: dy’ . (15)

M=O dl

This expression can now be used to define the multimode

equivalent network representation in Fig. 2, where the generic

element Y~,~ of the multimode coupling matrix is given by

/

d~

Yn,m = Mm(y’)A. . e: dy’. (16)
dl

It is important to note that the derivation of the funda-

mental integral equation has been carried without introducing

any approximations. Furthermore, the kernel of (14) is not

frequency dependent and this greatly simplifies the solution

of the problem. The only frequency dependent term is B, as

defined in (6). As a consequence, the resulting expression for

the generic coupling matrix element Yn)m has the same, very

simple frequency dependence.

The last step of the procedure is the solution of (14). As

will be shown, this integral equation can be reduced to a

Cauchy-type singular integral equation of known solution [7].
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Fig. 2. Specific form of the equivalent network representation of the capacitive single (and double) strip in Fig. 1. For the sake of space, only three
modes are shown explicitly.

As a consequence, closed-form analytical expressions for the

generic element of the multimode coupling matrix can be

easily obtained. The details of the mathematical procedure of

the solution of (14) are reported in the Appendix A. The final

expression fm the generic coupling matrix element is

I

1 Rn(v’)[Qm(v’) – Cm]

“., ~~= Lb’ @,,

where

y = ~ arccos[kl + kzv’] (19)
T

Qm(z)) = :

1

1 ~ fm (~ arccos[kl + ‘2”]) dv (Zf))

‘1 fm(?J) = Co:(-+’v)(21)

/

1

D=

“=- ’23)

III. DOUBLE STRIP

(24)

(25)

The formulation of the double-strip problem is essentially

identical to the single strip case. The only difference is that

now all integrations are performed over an interval that has

a gap in it, corresponding to the air gap between the strips

in Fig. 1. As a result, the network shown in Fig. 2 is !still

applicable, provided that the appropriate expression is used

for the coupling matrix elements Yn,~. Using the single-strip

results derived in the previous section, we can therefore write

directly

(26)
f

&)

Y– Mm(y’)AO . e; dy’
“m — @

{

~:)

e—
B 5~e.e:@’ (27)

Mm(y’)A. “ # + #) ~=1

m — 41)

where the bar through the integrals means that the integraltim

variable cannot assume values in the interval [d:), d:) I in

Fig. 1.

Equation (27) can again be reduced to a Cauchy-type

singular integral equation of known solution ([1], Ch. 7’.1).

The mathematical details are reported in Appendix A, and the

final expression for the generic coupling matrix element now
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becomes

J–1

where

~n,m(c) = {Q:(I$) + Qh(O - Pm(t)}R.(f)
x(f)~~

{
1 arccos(kl + kzc’) +!;

R.(f) = ~ 1
n=(J

; sin[n arccos(kl + /f2~’)] +:; n # O

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

fm(~) = COS[m arccos(kl + ~2191. (45)

IV. SINGLE APERTURE

The multimode equivalent network for the single and double

strip cases has been set up in terms of the magnetic field

discontinuity due to the present of the metal strip. For the

single and double aperture cases, it is more convenient to set

up the formulation in terms of the electric field in the air gaps.

The first step in the formulation is again the expansion of

the total transverse magnetic field in the form

‘M=(J

where the superscript (n) indicates z < 0 or z > 0, for n = 1

or n = 2, respectively. The next step is the imposition of the

boundary conditions in the air gap, obtaining

cc cc

rn+l rn=o

Similarly to what was done previously, we now observe the

behavior of the terms being summed on the left- and right-hand

sides of (47) for m ~ co, obtaining

J7L)

lim I$)h,m(y) = (–l)”V$) ~ ‘m(Y) (48)
m+w

where constant B is again given by (6), and the minus sign

on the right-hand side of (48) is again a consequence of the

assumption that the excitation consists Qf a finite set Qf Till

modes so that, for m - cc, only reflected contributicms are

present.

Following the same procedure developed for the single strip

case, we now add and subtract to both sides of (47) the term

and obtain, with a few manipulations, the following

sion:

(49)

expres-

(50)

where the modal voltage and currents V~‘“) and 1$) have

been redefined according to

-(

~$1) + ~$2)

~(1) – ~$) + Vm Bm )
= 7m (51)

v~l) = V& = ~m . (52)
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The next step in the solution of the problem is the use in

(50) of the transform relation between the transverse electric

field and the modal voltage, namely,

/

dz

v. = [z. X E] . h: dy’ (53)
di

obtaining, after a few manipulations, the following expres-

sion:

2 Tmhm(y) =
/
‘2[.ZOx E] . B-l (Cy+C!’))

m+ ‘I

mh~(?J)h;(Y’) dy/“x (54)
nn=l

(note that, since the obstacle is zero thickness, we have

E(l) = 13(2) = E in the air gap). In writing this last equation,

we have changed, for convenience, the index of the summation

from m to n on the “right-hand side of (50).

Due to the linearity of the problem, we can again define a set

of unknown functions L& which are related to the transverse

electric field in the air gap via

ccl

(.zo x E) = ~ 7mAOMm(y’) (55)

Tn=(l

where A. is a vector constant to be defined later.

z

v /’-’, (2)

Inserting now (55) in (54), and comparing like coefficients,

the follow~ng integral equation is obtained:-

/

‘2

k(v) = Mm(y)Ao . B-l (cL1)
dl

mhTL(V)%(Y’) dy/ .“x nn=l

The completion of the network formulation

substituting expression (55) into (53), finding

+ 6$’))
(56)

is obtained by

The result of this last step can again be used to define a

multimode equivalent network representation (Fig. 3) wlhere

the expression for the generic element Zn,~ of the muhimlode

coupling matrix is given by

/

d2

z n,m = Mm(y’)AO . h:(y’) dy’ . ((58)
dl

It is important to note that the integral equation derived has

all the features already outlined for the strip case. The details

of the mathematical procedure of its solution are reported in

Appendix B. The resulting final expression for the generic

coupling matrix elements is

k=l J

(59)

z
n,m

Fig. 3. Specific form of the equivalent network representation of the capacitive single (and double) aperture in Fig. 1. For the sake of space, only
three modes are shown explicitly.



1200 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 617, JUNEIJULY 1993

where

/

D~m) = “ cos(kx) cos[m arccos(C + S cos x)] dx (60)
o

(c=+Cos
xdl r dz
~+cos T

)

(

xdl
s=; COST

~d2
— Cos —

)b“

(61)

(62)

V. DOUBLE APERTURE

The network representation shown in Fig. 3 can be used

for the case of the double capacitive aperture shown in Fig. 1

as well. To obtain the appropriate expression for the coupling

matrix element Zn,m, we only need to introduce an additional

gap in the integration intervals. The fundamental equations

then becomes

{

@

z– i$fm(y’)/io .h;(y’) dy’ (63)
“m — @

{

&

hm = M~(y’)Ao . B-l (C$ll + C$2))
~~1)

“E ‘“(y!n(y’) ‘y’
(64)

.
rt=l

where the bar through the integral means that the integration

variable cannot assume values in the interval [d!), d~) ] in

Fig. 1.

Equation (64) can again be solved analytically, and we refer

the reader to Appendix B for the mathematical details of its

solution. The resulting final expression for the coupling matrix

elements is given by

B-
2n,m =

(

(1) + #
7r2 E,

* Pim) + N@)fp

) [( )(

1+ 2 ~ k (/3\m) + I:m))/3~) (65)
k=l

where

J

T

6$) = cos(kx) cos[n arccos(C’ + S cos x)] dx
o

[m
I~m) = k: (&pk + & (W+ W) Af)

– 2 ~ lp[m)~:)

1=1 1

cm =
S{rn)RZ – S$m)Rl

PORZ – RIA

(m)AS(m)po – S1~(m) = 2

PORZ – RIA
y$) ~

Rl=—
log s – k:

R2 =
1

— AO
log s

J

(66)

(67)

(68)

(69)

(70)

(71)

Qz(O = +
1 &-p

/_, c’-<
cos [1 arccos(kl + Icz(’)] d~’ (78)

Qo(O = -t

{

–1 arccos(kl + ~2&’) 1/;
&=~

k=o
1 sin[lc arccos(kl + k2&’)][*; ~ # Oz

(

(1)
rdl

(2)~d2
c=; cos~+cos~

)

(

(1)
xdl

(2)

s=: COST
nd2

— Cos —
b

)

km = ;(q2 – (–l)nql)

~n = CosXn

“= arccos[+(cos~
‘2=arccos[~(cos+

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

VI. NUMERICW CONVERGENCE PROPERTIES

The expressions derived in the previous sections for the

generic coupling matrix elements of the single and double strip

cases generally involve integrations that are best performed

numerically. In all of the cases that we considered, a 96-

point Gauss integration procedure has been used [8], for

a maximum modal index m = 40, obtaining very good

numerical convergence.

The results developed for the single and double aperture

cases contain summations in addition to integrals. The integrals

have been treated numerically in the same fashion as for the

strip cases without any difficulty. What is left is to evaluate

the convergence properties of the summations in (59) and (65).

Fig. 4 shows the variation of the value of the coupling matrix

element for n = 10 and m = 10 according to (59) (single

aperture) as a function of the number of terms summed. As

we can see, adding ten terms, good convergency has already

been achieved.
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The double aperture case is slightly more complex than the

single aperture since it involves. double summations. Again,

in Fig. 4, the convergence behavior of the coupling matrix

element for n = 10 and m = 10 according to (65) (double

aperture) is shown (dotted line). For this calculation, 28

terms have been computed in all the other sums required.

The discontinuous behavior in Fig. 4 is due to the fact that

the test was performed using a centered obstacle (single or

double aperture). In this case the even modes are not excited

and, therefore, the contribution presented by these modes is

negligible.

We have also evaluated the convergence of the inn~;)sum-

mations, and it has been found that the values of S1 and

S$m), computed form= 10, according to (72) and (73), reach

a reasonable constant value with again just 10 elements. As

a conclusion, we can say that in spite of the more complex

analytical expression for Zn,n, the convergence properties

of the double aperture are similar to the ones of the single

aperture. Furthermore, if the modal index m or n is increased,

a similar behavior is observed, obtaining good numerical

convergence with a number of terms eqtial to the largest modal

index.

An additional convergence test that is useful in appreciating

the value of the representations derived is its modal conver-

gency, namely, the number of modes that must be explicitly

included in order to obtain the numerical convergency of the

results obtained from the network calculations. In Fig. 5 we

show the normalized susceptance introduced by a centered

capacitive strip, and by a centered capacitive aperture in the

lowest mode of a rectangular waveguide, versus the number

of higher order modes explicitly included in the calculations.

As we can see, in both of the cases, ten modes are enough to

obtain acceptable numerical accuracy.

In the example shown @ Fig. 5, only one mode is above

cutoff in the waveguide. If the frequency of operation is

increased, so that more modes are allowed to propagate, one

must increase the number of modes explicitly included in the

network calculations. The exact number of modes that must

I

o 5 10 15 20 25 30
Number of terms in the serie

Fig. 4. Convergence behavior of the coupling matrix elements for the single
and double aperture problem. The computed parameter is Zn,~ in (59) and
(65) for n = 10 and m = 10.

Numbw of Modes

Fig. 5. Number of modes needed to get numerical convergency with the

network developed. The computed parameter is the normalized suscept ante

introduced by a centered capacitive strip and by a centered capacitive aperture
in the lowest mode of a rectangular waveguide. The waveguide dimensions

are those in Fig. 4 with d/b = 0.9 for the capacitive strip and d/b = 0.05
for the capacitive gap.

be included for a specific structure is best determined by ob-

serving the numerical convergence of the electrical parameter

of interest. Note, however, that the network representations

derived do not exhibit any relative convergence phenomenon,

but give uniformly convergent results as the number of mcldes

is increased.

VII. VALIDATION OF THE RESULTS

For a simple validation of the network representations

derived, the results obtained for the capacitive strip in a

rectangular waveguide has been compared with the clnes

available in the technical literature. The transition from the

parallel plate environment to the rectangular waveguide can, in

fact, be effected very easily following the derivation presented

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 11.00

d/b

Fig. 6. Comparison of the normalized susceptance introduced by a cerrtered
capacitive strip and by a centered capacitive aperture in the lowest mode of a
rectangular waveguide. The stars and squares indicate the results obtitined
using [2] while the continuous and the dashed line have been obtained
using the network presented in this paper. The waveguide dimensions are
a = 22.86 mm, b = 10.16 mm, and the frequency is 9.0 GHz. The parameter
d in this figure corresponds to d2 – dl in Fig. l(a).
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in [5]. Fig. 6 shows the results of a comparison between [2]

and our multimode network approach in the single mode case.

The quantity computed is the normalized susceptance seen

by the lowest mode as a function of the obstacle width for a

centered capacitive strip and for a centered capacitive aperture.

As we can see, the agreement is excellent.

A mme detailed validation of the results obtained in this

paper is included in a companion paper that focuses on the

analysis of planar transmission line structures.

VIII. APPLICATION

As a simple application for the networks developed, we

present in this section a procedure for the computation of the

resonant frequencies of the cavity shown in Fig. 7. To analyze

this structure, we consider propagation in 2 and the resonant

frequencies are obtained by imposing the resonant condition

of the resulting transverse equivalent network.

It is important to note that the networks derived apply to

the case with kz = O. We need, however, to consider the three

different wave number, namely, k., kv, and k,. The derivation

of the networks for the case km # O turns out to be a very

simple problem (one only needs to substitute k: by k? – k:

in the old network representation) [5].

Following this procedure, the problem becomes extremely

simple as the resulting modes are the hybrid H-type, and

this kind of mode does not couple to E-type modes in the

discontinuity. Furthermore, the waveguide is uniformly filled

with a dielectric e., and this results in that no coupling between

H-type and E-type modes is produced. The main implication

of this is in that the structure of Fig. 7 can be studied under

H-type and E-type excitation separately.

The transverse equivalent network for this structure under

H-type excitation can be extracted from Fig. 2. In this figure

we only need tQ add short circuits to bQth ends of the

transmission lines representing the propagation of the modes.

These short circuits take into account the effects of the

metallic walls at the top and bottom of the box. Now the

characteristic impedances of the transmission lines are the ones

corresponding to H-type modes, namely,

t

Y

<’~j y’
Fig. 7. Cavity whose resonant frequencies are computed using the

representation developed.

(87)

The frequency dependent constant B becomes

B: =
–jTw#o

b[k;er – k:] ‘
(88)

the impedances in series attached to the network are

zm,n = ~B:, (89)

and, from the separability condition, we write straightfor-

wardly

‘Zmn” -

In all the above equations, the expressions for

numbers in 2 and j directions are known to be kz

kY = nnlb.

As an example, in the table below the resulting

(90)

the wave
—— m7r/a,

frequencies are listed for a cavity with a = 15 mm, b =

10 mm, t = 5 mm, c = 5 mm, and e, = 2.2. In the first

column of the table, few resonant frequencies of the cavity

without the discontinuity can be seen; whereas in the second

column, the resonant frequencies of the structure with the

metal strip are presented. In this table, w is the width of the

metal strip, and p is the index for the wave number in 2.

Furthermore, the indexes for the wave numbers in 2 and y

have been fixed to m = 1 and n = 1, respectively.

TABLE I

Ul=o w = 1.2 mm

p=o 6.74 GHz
p=l 15.81 GHz 15.81 GHz
p=2 23.59 GHz 23.59 GHz
p=3 32.68 GHz 32.68 GHz

From the table, it can be seen that a new resonant frequency

appears due to the presence of the metal strip; this technique

can be applied to build resonators at lower frequencies without

increasing the size of the box.

IX. CONCLUSION

In this paper we have presented a set of novel, multi-

mode equivalent network representations for a class of zero-
thickness capacitive discontinuities. The main features of the

results obtained are that they are rigorous and that the results

are given directly in terms of impedance or admittance matrix.

Furthermore, the generic elements of the coupling matrix are

derived in terms of integral equaticms that do not depend

on frequency or absolute dimensions so that they need to be

computed only once for each given geometry.

This last feature has very important consequences in terms

of the numerical efficiency of codes based on this approach.

In fact, the full formulation can be used to generate a set of

coupling matrices cmresponding to a discrete set of geome-

tries. All other matrices corresponding to intermediate cases

can then be simply obtained using an interpolation algorithm.
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As a result, the CPU time required for the characterization of

the discontinuities becomes negligible. To obtain the electrical

behavior of a structure over a given frequency range, one only

needs to invert a system of linear equations (once for each

frequency point). This feature can be exploited to produce

codes that are computationally very efficient,

In addition to the theoretical formulations, we have pre-

sented in this paper various results, with the aim of validating

the multimode network representation derived. All the re-

sults included indicate very good behavior both in terms of

numerical and of modal convergency.

The main application of the results obtained is to the study

of planar transmission line structures. The networks developed

can in fact be used to study planar transmission line geome-

tries by using the transverse resonance technique [9]. Single

and coupled lines can be easily studied. In addition, several

discontinuities can be easily cascaded, thereby expanding the

range of applicability of this approach to a very large variety

of structures.

so that (93) becomes

()sin $

()
dy’ (95)

Cos(y) –Cos y

where

(96)

It is now convenient to use the changes of variable

cos(ny’/b) = q’ and q = kl + k2v, where lcl and k2 are

defined in (24), so that (95) becomes

n )J 1 Fm(v’) ,
~ fm ~ arccos[kl + k2v] = ~ _l ~ dv

(97)

APPENDIX A
where

To obtain the explicit expressions in (17), we first substi- –Bb2
ML ~

)(
Cos [kl + kzv’]

)
= Fm(.v’) (98)

tute the expression for the vector mode functions in (14),
(

~T ~:) + ~~) T

obtaining

r /

dt
and kl and k2 are defined in (24). Equation (97) is now

cm—co/2q/=
2 b

Mm(y’) B a standard Cauchy-type singular integral equation of known

dl
(

~$1) + ~$2)

)
solution [7], namely

~~ncos(~g)cos(~ y’) dy’ (91)
‘m(v’=EAFm-+ l=’‘n=l

where we have chosen AO such that fm(:
)1

arccos[kl + kzv’] dv’ . (99)

[
A.(–yo) ~ = 1.

It is now convenient to define Qm(v) as in (20) so that (99)

’92) becomes

We then integrate (91) by parts, obtaining
r

z & [Cm - Qm(v)] .‘m(v) = fi (:100)

Tcm

/

d~
—co/Ky=_
2 b

M~(y’) ‘b

(
(1) + #

)

We next derive the expression for Yn,m in (17). To do so, we
d, T ET introduce in (16) the expression for the vector mode functions,

where ML is the derivative of Mm, and we have imposed

the condition that Mm(y) = O for y = dl and y = dz where we have used

(this condition will be reintroduced later in a self-consistent Let us now recall

fashion).

/
d:Mm(y) COS(; y)dy (:101)

for AO the expression in (92).

that

ry,
The kernel of (93) can now be summed using the relation Mm(Y) = Jdl M&(Y’)dY’ (102)

([1], Ch. 6.2.2)
Using (98) and (100), eq. (102) is transformed into

ii%~’-’ncos(?y) si”(? )’) =n=l
(

Mm ~ arccos[kl + k2v]

()

T

1
sin ~

)= ~g(c:’+,y))

“1

v

(94)
(Cm - Qm(v’))

dv’ . (103)
z

()
Cos(y) – Cos q -1 /=L/=iGi7
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Now, using the above expression, we can rewrite (101) in the

form

–~~ Jl) + @)(.,.= vJGzi~ .Y

“/

1 (Cm - Qm(v’))

~
-1 /1=7 1- (k, + k2v’)

“/

1 cos(n arccos[kl + kzv] ) ~v ~v,. ~104)

“ ~

where we have inverted the order of the integrations. At this

point, the integral in du can be evaluated analytically, so that

we obtain the expressions given in (18).

The last analytical effort is the computation of constant

Cm. To find its value, we use (103) and the condition that

Nfm (y) = O for y = dl and y = d2, obtaining

2K2

–( )[
# + # %

0= Bb 2

“/

1 (Cm - Qm(v’))

., ~=dv’ (,(),)

from which Cm can be found in the form shown in (22)

and (23).

For the solution of the double strip, an additional gap must

be added to the integration intervals of the relevant integrals,

thereby obtaining (26) and (27). Equation (27) is again a

standard Cauchy-type singular integral equation with one gap

inside the integration interval. The solution for this equation

can be found in ([1], Ch. 7.1.2), namely, “

(106)

where Pm(f), X(f), and ~m(~) are those defined in (38), (31),

and (45), respectively. Following a procedure similar to the

one used for the single strip, (26) now becomes

“{

1 [Qm(&’) - Prn(c’)l~rt(&)d(~ (107)

‘1 x(~)~

where Rn is defined in (30), and Qm takes the form

Qm(O = +
f

1 X(c’)fm(e) dg,
,$1-( “ (108)

–1

At this point, it is convenient to introduce the following

changes of variables:

&u,l = kyz+ kyv (109)

where k~, k;, k:, and k; are found in (36) and (37). Using

these changes of variables for both & and f’, (108) splits in the

four shown in (43) and (44). If the same change of variable

is used for the ~ variable in (107), one can easily obtain (28)

and (29) for the coupling matrix elements.

The completion of the solution for the double strip is

obtained by finding the two unknown constants appearing in

Pm in (38). Using the same procedure as for the single strip

problem, (103) now takes the form

“f

( Pm(r$’) – Qm((’)

‘1x(@-=- ‘f’‘110)
Now, imposing the condition Mm(y) = O for y = d~),

y = d~), y = d!), and y = d$), the following two relations

are obtained:

(2)
where cl

(1)
and <2 are those defined in (35). It is now

convenient to use the changes of variables (109) in (111)

and (112), so that after defining (41) and (42), the unknown

constants take the form shown in (39) and (40).

APPENDIX B

To obtain the final results given in (59), we substitute the

expression for the vector mode functions in (56), obtaining

where we have chosen AO such that

rA.(–xo) ; = 1. (114)

The kernel of (113) can be summed using the relation ([1],

Ch. 6.1.2)

E: co’(wcos(%’)=-+
n=l

[1
. 2cos7–cos~

II
, (115)

Now, using the following change of variable, originally due

to Schwinger [10]:

()Cos ~ y
b

=C+scosx, (116)

(113) becomes

[

co

1fro($)=/“&(d)-+10g S + ~ COS(h) COS(/d) dx’
o k=l

(117)
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where we have changed the index of the summation from n

to k for convenience, and

fro(z) = /* COS[77Zarccos(C + S cos x)] (118)

iMm [~ arccos(C’ + Scos z)]
Fro(x) =

(-;)~~

( )( ). B-l E=lJ + .6$2) –S sinz. (119)

(In the above expressions, C and S are defined as in (61)

and (62).)

The set of functions cos(k$) is a complete, orthogonal set

of functions between O and x, so it is possible to express any

function in the form

m (m) ~os(kx)

fro(x) = Cim) + ~ Ck (120)
k=l

where the coefficients can be easily obtained using the orthog-

onality property, yielding

(121)

(122)

‘m) and D~m) are those defined in (60). Compar-and where Do

ing (117) and (120), we then obtain

The function Fro(x) can now be expressed as a linear

combination of the same set of functions, namely cos(kxc),

obtaining
.-

Fm = ~ ~:m)COS(kZ). (125)

lc=o

Using again the orthogonality property, we find

‘m

@m) = z
/ Fro(z) COS(k%) dx . (127)

7ro

{
From 123) and (124), we can now write the general expression

for E,m), namely,

‘$m)=(+)2(a)fiD~m) ‘128)

‘ire)= (G)2’ED~m)
(129)

So that Fm (x) is found to be

F.(z)= (:)2($) fiD$)

+E(:)2kED~m)c0s(k’) ‘130)

We next derive the expression for Zn,~ in (59). To do so, we

introduce in (58) the expression for the vector mode function,

obtaining

where we have used for Ao the expression in (114). I-Jsing

(119) and (130), eq. (131) takes the form shown in 1(59),
(m) defined as in (60).with the coefficients Dk

For the double gap, the only difference is that in (11.3) and

(131), there is an additional gap in the integrals. To analytically

solve the resulting equations, it is convenient to define the

following auxiliary functions:

@m(y’) =

{

~m(y’); ‘dy’ $? [df), d~)]

o; Vy’ E [d$) , d~)]

I&(y) =

{

frn(Y); Vy’ $ [d;), d~)]

fro(Y) + 9m(Y); ~Y’ e [d!), dr)]

(132)

(133)

where .f~ (y) is defined in (118), and g~ (y) is an unknown

function. A similar procedure was also used in ([1], Ch. 7.1.2),

but with a different definition of the auxiliary functions.

On using (132) and (133), we remove the gap from the

integrals in (113) and (116), yielding

I
@

Hrn(y) =
(~(l) @m(y’)B-l @ + #) )

1

“5+ Cos(?dcos(?y’)dy’“’34)
n=l

m&)

z
Em

rz, m =
T ~p ()

@m(Y) cos ~ Y dy . (:135)

Following a procedure similar to the one previously outlined

for the single aperture, (134) is now transformed into

(m) .
where the coefficient Ik M found in (67), and xl, .Z2 are

those defined in (85) and (86), respectively.

Equation (136) can be reduced to a Cauchy-type singular

integral equation for the unknown function g~ (z). Its solution

was reported in Appendix A.

Once gm (x) is found, the generic expression for the cou-

pling matrix elements in (65) can be obtained in the form

shown in Section V.
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