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Rigorous, Multimode Equivalent Network
Representation of Capacitive
Discontinuities

~ Marco Guglielmi énd.Alejandro Alvarez ‘Melc6n

Abstract—In ‘this paper we present novel, rigorous, multimode
equivalent network representations for a variety of zero-thickness
capacitive windows.and obstacles in a parallel plate waveguide. A
key feature of these representations is that the coupling between
all of the modes excited is described by a matrix whose elements
do not depend on frequency or absolute dimensions. The value of
the results presented is that the networks developed can be used
to analyze rigorously a large variety of smgle and coupled planar
transmission line structures

[. INTRODUCTION

EVERAL equivalent network representations for capaci-
Stive discontinuities are availablé in the technical literature
in terms of impedance (or admittance) equivalent networks
([1], Ch. 6.1.5) [2]—[3]. The equivalent network representa-
tions are very useful, when they can be used, because they are
extremely efficient from a computational point of view. Most

of the network representations that are available, however,
~ only involve fundamental modes and thus have very limited
Va11d1ty

In a multimode situation, it would be nice to be able
to retain the computational efficiency of the impedance (or
admittance) networks and still perform a full-wave analysis.
The results given in [3] do allow the development of a true
multimode equivalent network, but a general network form
is not given and the applications discussed are limited to
cases in which only the first higher-order mode is explicitly
included. Recently, we derived a set of multimode equivalent
network representations for inductive discontinuities {4]. The
networks derived were rigorous, could be applied to arbitrary
geometries, and could easily account for an arbltrary number
of higher-order modes.

In this paper, the procedure used in [4] is suitably modi-
fied and applied to the analysis of zero-thickness capacitive
obstacles and windows. in a parallel-platc waveguide. The
key component of the network representations derived is an
impedance (or admittance) multimode coupling matrix whose
elements are obtained in terms of the solution of an integral
equation. The solution of this equation is shown to be known
so that rigorous expressions for the matrix elements . are
derived. ' '
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A salient feature of this approach is that the integral
equations derived, and therefore also the coupling matrices,
do not depend on frequency or absolute dimensions. The com-
putations of the coupling matrix elements thus only involve
geometrical parameters that need to be computed only once
for each given geometry. The analysis of the structures over a
specific frequency range is then carried out via simple network
computations that can be performed very rapidly even on small
computers.

In this paper, the electromagnetic formulation of the prob-
lem is discussed together with the mathematical procedure
that leads to the final expressions of the coupling matrix
elements. The discontinuities ‘analyzed in the paper are the
single and double strip, and the single and double aperture, as
shown in Fig. 1. However, the same procedure can be used
to obtain network representations for an arbitrary number of
strips or apertures as well. Numerical results are presented
comparing the results of computations carried out using the

networks developed in this paper and the ones obtained

using the networks available in the technical literature. The
convergence properties of the solutions developed are also
discussed indicating how, in addition to being very accurate,
the networks developed are also very rapidly convergent.

The value of the- results presented in this paper is in that
they can be used to develop very efficient codes for the full-
wave analysis of a large variety of single and coupled planar
transmission line structures. '
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-Metallic, zero-thickness capacitive discontinuities for which rigorous
multimode equivalent network representations are derived.

Fig. 1.
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II. SINGLE STRIP

To set up a multimode equivalent network representation for
the single strip case, we recognize that since the discontinuity
is uniform in the z direction of Fig. 1, to solve the problem
we only need to study the discontinuity with the excitation
at normal incidence (k, = 0). Once a network representation
is derived, the result for the general case with &k, # 0 can
be easily obtained by following the procedure outlined in [5].
The excitation is chosen to be TM with respect to z so that
only TM,,, modes will be excited. The relevant vector mode
functions can be found in [6], and the characteristic modal
impedance is given by

( 3 ey

where the superscript (n) indicates 2 <0orz>0forn =1
or n = 2, respectively. It is important to note at this stage
that, for m — oo, the modal characteristic impedance takes
the form

The first step of the formulation is the expansion of the total
transverse electric field in terms of the modes of the parallel
plate waveguide, obtaining

Z Vi (2)em(y) . (3)

The next step is the imposition of the boundary conditions on
the metal strip, namely,

Z V(")e = 0; z

Let us now observe the behavior of the terms being summed
in (4) for m — oo, namely,

lim Ve, (y) = lim ()" I zMe, (y)

E(”)

Il
o

4)

mB
= (-1)" I o em(¥) &)
€r
where constant B is given by
—jr
B= bwe ©

and the minus sign on the right-hand side of (5) is a con-
sequence of the assumption that the excitation consists of an
arbitrary but finite set of M modes so that, for m — oo,
only reflected contributions are present.

As will be evident later, it is now convenient to add to and
subtract from (4) the term

— Z [(1)

then add the resultlng equations to each other and obtain, with
a few manipulations, the following expression'

X_:Ovme’" Z (1) (2) emy)  ®)

em(J)+ ZI(Z) po) em(y), @
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where the modal voltage and currents V,SL") and L(,? ) have
been redefined according to

mB__y (10)

Vo + T D
61(~1)67(n2)

The next step in the solution of the problem is the use in (8)
of the transform relation between the transverse magnetic field
at the discontinuity location and the modal currents, obtaining

T [ [oox (O - 1)) ey

The above expression can now be used in (8), obtaining

oo da
V. e (y) = 2, W _ g@
> Vaenl® / [ < (5O -H®)]

(1) (2) Znene dy’ .

Note that, in writing this last equation, we have changed,
for convenience, the index of the summation from m to n in
the right-hand side of (8).

Due to the linearity of the problem, we can define a set of
unknown functions M,, which are related to the transverse
magnetic field via

(1D

(12)

o0
2z, X (Hm - H<2>) =Y VaA.Ma(y/)  (13)
m=0
where A, is a vector constant to be defined later.
Inserting (13) in (12), and comparing like coefficients, the
following integral equation is finally obtained:

d
2 B

M., (y)A, - o) E nener dy' .
n=1

e (14)
4 IO

€y =

The completion of the network formulation is obtained by
substituting expression (13) into (11), finding

1, = Z V.. A
M=0 d1

This expression can now be used to define the multimode
equivalent network representation in Fig. 2, where the generic
element Y,, ,,, of the multimode coupling matrix is given by

M () - ey, dy’. (15)

d;
Yom = M., (A, e’ dy .

d

(16)

It is important to note that the derivation of the funda-
mental integral equation has been carried without introducing
any approximations. Furthermore, the kernel of (14) is not
frequency dependent and this greatly simplifies the solution
of the problem. The only frequency dependent term is B, as
defined in (6). As a consequence, the resulting expression for
the generic coupling matrix element Y, ,, has the same, very
simple frequency dependence.

The last step of the procedure is the solution of (14). As
will be shown, this integral equation can be reduced to a
Cauchy-type singular integral equation of known solution [7].
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Fig. 2. Specific form of the equivalent network representation of the capacitive single (and double) strip in Fig. 1. For the sake of space, only three
modes are shown explicitly.

As a consequence, closed-form analytical expressions for the Eo—= 12T (=1)"m (24)
generic element of the multimode coupling matrix can be " 2
easily obtained. The details of the mathematical procedure of Mo = cos(—;:— dq 2) . (25)

the solution of (14) are reported in the Appendix A. The final

expression for the generic coupling matrix element is
III. DOUBLE STRIP

2 (1) (2)
Yom = Jenem k2 ( ) The formulation of the double-strip problem is essentially
e 7B identical to the single strip case. The only difference is that

[} ) el
1= (ks + ka2 VT

17 now all integrations are performed over an interval that has
a7n a gap in it, corresponding to the air gap between the strips
in Fig. 1. As a result, the network shown in Fig. 2 is still

applicable, provided that the appropriate expression is used
where pp p
T Y. _ for the coupling matrix elements Y,, ,,,. Using the single-strip
R.(y) 113 (y — da); n= 0 (18) results derived in the previous section, we can therefore write
)= ke |+ [sin(22y) —sin(ZF da)]; n#0 directly P ’
b
y=— arccos[ky + kot (19) 4@
n,m — M, ! 0" . ! 2
Qi) Vom = f Mt 4o e o @6)
Fo)
= 5 B
1 V1 =12 fin (L arccos[ky + kv dv (20) e = ? Mo () Ay - ————— Znene &y (27)
v—1v & HONNO) —~
) = cos("“r ) @
b where the bar through the integrals means that the integration
v variable cannot assume values in the interval d(l),d(z) in
dv  (22) 2
Crm Fig. 1.
D 1-— k1+k21/) Vv1i—1v2 '8

Equation (27) can again be reduced to a Cauchy-type
3 singular integral equation of known solution ([1], Ch. 7.1).
(23) The mathematical details are reported in Appendix A, and the

D= /
-1 ,./1_ VAT = 2 i
1= (ki +kov)” V1—v final expression for the generic coupling matrix element now
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becomes

2 ( o 652))

= Ve g

Lt

o (R + K3 )ky + Fr (kL + kbv) k5] dv

(28)
where
Qu.(&) + QL. (¢ R (§)
Fun(§) = 192E T &) - P EJIE)
X1 — (k1 + sz)
1 | arccos(ky + ka€') ¥; n=0 |
’ 30
Ba(€) = ]{Jz{ L sin[n arccos(ky + kot")] £; n#0 (30)
= VI=2 -1y (31)
- 2 W, @
=y o) [5“2‘(” +n7) 2)
2" —M
n{’f; = cos(; d§7"2) ) (33)
) _ 1,0
1
fé,liz) = T [7751’2) - kl] (35)
(1Y@
(1)
K = ——*2( D 37
Pr(€) = Cpp + Ot (38)
TeSt — 1! 5w
CO —_ Tm¥1 m*1 30
™o SySh— Sisy 39)
Tl Sy _ Tu Sl
SySt - Ssy
Su,l — /1
" -1
(ki + k;“ly)n
2
X (k4 ') \/ 1= [+ o (K + k)]
kyldy (41
1
T = /
-1
Qun (K + k') + Qb (k! + B3y
2
X (k4 k') \/ L= [ o (B + B 10) ]
k¥tdy  (42)
u U 1
a1+ 151 - £
1 X(kUl+kUI /)fm(kul+kul /)
/ dv' (43)
—1 Vv —v
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. 5" dy

(R = R+ (R - k)

fm (&) = cos[m arccos(k1 + k2£)] .

(44)

(45)

IV. SINGLE APERTURE

The multimode equivalent network for the single and double
strip cases has been set up in terms of the magnetic field
discontinuity due to the present of the metal strip. For the
single and double aperture cases, it is more convenient to set
up the formulation in terms of the electric field in the air gaps.

The first step in the formulation is again the expansion of
the total transverse magnetic field in the form

Z I(n) m(y)

where the superscript (n) indicates z < 0 or 2 > 0, forn = 1
or n. = 2, respectively. The next step is the imposition of the
boundary conditions in the air gap, obtaining

H™ = (46)

[eo] oo

> IV hm(y) =Y TPk ()

m=0 m=0

z2=0. (47)

Similarly to what was done previously, we now observe the
behavior of the terms being summed on the left- and right-hand
sides of (47) for m — oo, obtaining

(n)
. n ny (n) €r
Jim Ik (y) = (-1)"V{ ~= h(y)  (48)
where constant B is again given by (6), and the minus sign
on the right-hand side of (48) is again a consequence of the
assumption that the excitation consists of a finite set of TM
modes so that, for m — oo, only reflected contributions are
present.
Following the same procedure developed for the single strip

case, we now add and subtract to both sides of (47) the term
oo W 65«1) 0 @ E(2)
-y ViH—=—h VY ——h

and obtain, with a few manipulations, the following expres-
sion:

(49)

S T

m=0

oo (1) (2)
Z_V ( )hm<y> (50)

where the modal voltage and currents V,Sbn) and I,(,fb ) have
been redefined according to

JOIC!
+é
O _[® 7 <_€_)
m m ™ Bm
VD =v@®=v,_,

=1n (51)

(52)
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The next step in the solution of the problem is the use in
(50) of the transform relation between the transverse electric
field and the modal voltage, namely,

da
V, = / 20 X E]- h: dy’ (53)
d

1

obtaining, after a few manipulations, the following expres-
sion:

Z Tmhm(y) =

m=0

da
/ [2o x E]-B™* (651) + 652))
dy

. i PR g0

n

4

n=1

(note that, since the obstacle is zero thickness, we have
EW = E® = E in the air gap). In writing this last equation,
we have changed, for convenience, the index of the summation
from m to n on the right-hand side of (50).

Due to the linearity of the problem, we can again define a set
of unknown functions M,,, which are related to the transverse
electric field in the air gap via

(55)

(20 X B) = Y T AoMpn(y)
=0

where A, is a vector constant to be defined later.

1199

Inserting now (55) in (54), and comparing like coefficients,
the following integral equation is obtained:
d2
hu(y) = Mn(y)A, - B! (65.1) + 67(?))
1
. i ha(y)hy(y') &

& (56)

n=1
The completion of the network formulation is obtained by
substituting expression (55) into (53), finding

o0 dy ) i
V=Y Tn [ AMu@)h,)dy/. (57
m=0 d1

The result of this last step can again be used to define a
multimode equivalent network representation (Fig. 3) where
the expression for the generic element Z,, ,,, of the multimode

coupling matrix is given by
d2
Znm = |  Mun(y)Ao-hy(y)dy'. (58)

d1

It is important to note that the integral equation derived has
all the features already outlined for the strip case. The details
of the mathematical procedure of its solution are reported in
Appendix B. The resulting final expression for the generic

coupling matrix elements is

B mtn - (m) p§m) - n m
T = 20 [ DDV | § g1 i) pr)
(é I ))7,2 log § P

(59)

<|
(=]
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(49 + 49)
B(-1) 1

() + )
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Fig. 3. Specific form of the equivalent network representation of the capacitive single (and double) aperture in Fig. 1. For the sake of space, only

three modes are shown explicitly.
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where

D,(cm) = /0 cos(kx) cos[m arccos(C + Scosz)]dz  (60)

_ 1 7T‘d1 7rd2
C—g(cos b + cos b)

S = 1 7Td1 7T_dg
——2— Ccos b CcOoS b .

V. DOUBLE APERTURE

(61)

(62)

The network representation shown in Fig. 3 can be used
for the case of the double capacitive aperture shown in Fig. 1
as well. To obtain the appropriate expression for the coupling
matrix element Z,, ., we only need to introduce an additional
gap in the integration intervals. The fundamental equations
then becomes

a
Zngm =1, Mm(y)Ao-he(y) dy’ (63)

a*

a

h,, = M (y) Ao - B~ (651) + 65,2))

a

>\ k() ha (Y

n=1

where the bar through the integral means that the integration
variable cannot assume values in the interval [dy i d(z)] in
Fig. 1.

Equation (64) can again be solved analytically, and we refer
the reader to Appendix B for the mathematical details of its
solution. The resulting final expression for the coupling matrix
elements is given by

By/enén —1 ) (g™ (n)
’ 7r2(&.7(01) N 67(”2)) [<log5) (ﬂo t )'80
+23 k(8 + 1) ﬂ,ﬁ")] (65)
k=1
where
,(c") = / cos(kx) cos[n arccos(C + Scosz)|dr  (66)
0
(m) _ 2 L (50m) | 7m)) (0
Ik — kQ |:Omplc + 10gS (BO + IO )Ak
—2y" wf’”)AEP} ©7)
=1
S(m)RQ _ S(m)Rl
Cm ==L 2 68
polly — RiA (68)
Gim) - glm) A
(m)y_ P2 P0"°1 & 69
7 poRy — R1A 69)
A1
e log S B k_% (70)
1
Ry = —— Ay (71)

log S
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(m) _

54 ﬂ(m)/\(o) +2 Z lﬂ(m)/\(l) (72)
=1
S5 = ﬂ“’% +2 Z 1™ A, (73)
=1
_ 1 Ry (8)
P = ;/_ — (74)
1—(k1+k2§ V1-¢
W= / © i @5
Ty (k1 + ka&f VIi-&
LS - d (6
T 1= (b + ke8)® /T €2
_1 / Qu(§) an
T2 1= (ky + kof) ,/1—52
1
= % / - 5/2 cos [l arccos(ky + k2¢')] dE' (78)
1
Qo(§) = (79)
-1 arccos (k1 + k28’ )|1 E=0 &0)
i = k2 | + sinfk arccos(ky + k26)]lg; k#0
md{V nd)
C= ( ;T cos — 81)
1 del) 7d®?
5= 5 (cos . 2 (82)
kn %(772 ~(=1)"m) (83)
Tl = COS Tn (84)
1 rdH
Z1 = arccos [—5 (cos b2 — C) (85)
(2)
Ty = arccos[; (cos 7“21 - O) (86)

VI. NUMERICAL CONVERGENCE PROPERTIES

The expressions derived in the previous sections for the
generic coupling matrix elements of the single and double strip
cases generally involve integrations that are best performed
numerically. In all of the cases that we considered, a 96-
point Gauss integration procedure has been used [8], for
a maximum modal index m = 40, obtaining very good
numerical convergence.

The results developed for the single and double aperture
cases contain summations in addition to integrals. The integrals
have been treated numerically in the same fashion as for the
strip cases without any difficulty. What is left is to evaluate
the convergence properties of the summations in (59) and (65).
Fig. 4 shows the variation of the value of the coupling matrix
element for n = 10 and m = 10 according to (59) (single
aperture) as a function of the number of terms summed. As
we can see, adding ten terms, good convergency has already
been achieved.
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The double aperture case is slightly more complex than the
single aperture since it involves double summations. Again,
in Fig. 4, the convergence behavior of the coupling matrix
element for n = 10 and m = 10 according to (65) (double
aperture) is shown (dotted line). For this calculation, 28
terms have been computed in all the other sums required.
The discontinuous behavior in Fig. 4 is due to the fact that
the test was performed using a centered obstacle (single or
double aperture). In this case the even modes are not excited
and, therefore, the contribution presented by these modes is
negligible. :

We have also evaluated the convergence of the inner sum-
mations, and it has been found that the values of Sim) and
Sém), computed for m = 10, according to (72) and (73), reach
a reasonable constant value with again just 10 elements. As
a conclusion, we can say that in spite of the more complex
analytical expression for Z, ,,, the convergence properties
of the double aperture are similar to the ones of the single
aperture. Furthermore, if the modal index m or n is increased,
a similar behavior is observed, obtaining good numerical
convergence with a number of terms equal to the largest modal
index. ' ,

An additional convergence test that is useful in appreciating
the value of the representations derived is its modal conver-
gency, namely, the number of modes that must be explicitly
included in order to obtain the numerical convergency of the
results obtained from the network calculations. In Fig. 5 we
show the normalized susceptance introduced by a centered
capacitive strip, and by a centered capacitive aperture in the
lowest mode of a rectangular waveguide, versus the number
of higher order modes explicitly included in the calculations.
As we can see, in both of the cases, ten modes are enough to
obtain acceptable numerical accuracy. ~

In the example shown in Fig. 5, only one mode is above
cutoff in the waveguide. If the frequency of operation is
increased, so that more modes are allowed to propagate, one
must increase the number of modes explicitly included in the
network calculations. The exact number of modes that must
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) Fig. 4. Convergence behavior of the coupling matrix elements for the single
and double aperture problem. The computed parameter is Zp,m in (59) and
(65) for n = 10 and m = 10.
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Fig. 5. Number of modes needed to get numerical convergency with the
network developed. The computed parameter is the normalized susceptance
introduced by a centered capacitive strip and by a centered capacitive aperture
in the lowest mode of a rectangular waveguide. The waveguide dimensions
are those in Fig. 4 with d/b = 0.9 for the capacitive strip and d/b = 0.05
for the capacitive gap. !

be included for a specific structure is best determined by ob-
serving the numerical convergence of the electrical parameter
of interest. Note, however, that the network representations
derived do not exhibit any relative convergence phenomenon,
but give uniformly convergent results as the number of modes
is increased.

VII. VALIDATION OF THE RESULTS

For a simple validation of the network representations
derived, the results obtained for the capacitive strip' in a
rectangular waveguide ‘has been compared with the ones
available in the technical literature. The transition from the
parallel plate environment to the rectangular waveguide can, in
fact, be effected very easily following the derivation presented

--- Strip
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2.50

N
o
[«]
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Fig. 6. Comparison of the normalized susceptance introduced by a centered
capacitive strip and by a centered capacitive. aperture in the lowest mode of a
rectangular waveguide. The stars and squares indicate the results obtained
using [2] while the continuous and the dashed line have been obtained
using the network presented in this paper. The waveguide dimensions are
a = 22.86 mm, b = 10.16 mm, and the frequency is 9.0 GHz. The parameter
d in this figure corresponds to d2 — d1 in Fig. 1(a).
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in [5]. Fig. 6 shows the results of a comparison between [2]
and our multimode network approach in the single mode case.
The quantity computed is the normalized susceptance seen
by the lowest mode as a function of the obstacle width for a
centered capacitive strip and for a centered capacitive aperture.
As we can see, the agreement is excellent.

A more detailed validation of the results obtained in this
paper is included in a companion paper that focuses on the
analysis of planar transmission line structures.

VIII. APPLICATION

As a simple application for the networks developed, we
present in this section a procedure for the computation of the
resonant frequencies of the cavity shown in Fig. 7. To analyze
this structure, we consider propagation in Z and the resonant
frequencies are obtained by imposing the resonant condition
of the resulting transverse equivalent network.

It is important to note that the networks derived apply to
the case with k, = 0. We need, however, to consider the three
different wave number, namely, k., ky, and k.. The derivation
of the networks for the case k; # 0 turns out to be a very
simple problem (one only needs to substitute k3 by k2 — k2
in the old network representation) [5].

Following this procedure, the problem becomes extremely
simple as the resulting modes are the hybrid H-type, and
this kind of mode does not couple to E-type modes in the
discontinuity. Furthermore, the waveguide is uniformly filled
with a dielectric €., and this results in that no coupling between
H-type and E-type modes is produced. The main implication
of this is in that the structure of Fig. 7 can be studied under
H-type and E-type excitation separately.

The transverse equivalent network for this structure under
H-type excitation can be extracted from Fig. 2. In this figure
we only need to add short circuits to both ends of the
transmission lines representing the propagation of the modes.
These short circuits take into account the effects of the
metallic walls at the top and bottom of the box. Now the
characteristic impedances of the transmission lines are the ones
corresponding to H-type modes, namely,

Wi kz,m,n
Z8 .= 7%; g 87)
?y
e,
1
T
77 i
I [ i
/// X
P .
-
e 5 t/
< £

Fig. 7. Cavity whose resonant frequencies are computed using the network
representation developed.
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The frequency dependent constant B becomes

—JmWio
BE — 88
™ blk2e, — k2]’ (88)
the impedances in series attached to the network are
Zmn = 5B, (89)

and, from the separability condition, we write straightfor-

wardly
kzmn =1/ 26, — k; — k2.

In all the above equations, the expressions for the wave
numbers in # and § directions are known to be k, = mn/a,
ky = nm/b.

As an example, in the table below the resulting resonance
frequencies are listed for a cavity with ¢ = 15 mm, b =
10 mm, t = 5mm, ¢ = 5mm, and ¢, = 2.2. In the first
column of the table, few resonant frequencies of the cavity
without the discontinuity can be seen; whereas in the second
column, the resonant frequencies of the structure with the
metal strip are presented. In this table, w is the width of the
metal strip, and p is the index for the wave number in 2.
Furthermore, the indexes for the wave numbers in £ and §
have been fixed to m = 1 and n = 1, respectively.

(90)

TABLE 1
w=20 w = 1.2 mm
p=0 6.74 GHz
p=1 15.81 GHz 15.81 GHz
p=2 23.59 GHz 23.59 GHz
p=3 32.68 GHz 32.68 GHz

From the table, it can be seen that a new resonant frequency
appears due to the presence of the metal strip; this technique
can be applied to build resonators at lower frequencies without
increasing the size of the box.

IX. CONCLUSION

In this paper we have presented a set of novel, multi-
mode equivalent network representations for a class of zero-
thickness capacitive discontinuities. The main features of the
results obtained are that they are rigorous and that the results
are given directly in terms of impedance or admittance matrix.
Furthermore, the generic elements of the coupling matrix are
derived in terms of integral equations that do not depend
on frequency or absolute dimensions so that they need to be
computed only once for each given geometry.

This last feature has very important consequences in terms
of the numerical efficiency of codes based on this approach.
In fact, the full formulation can be used to generate a set of
coupling matrices corresponding to a discrete set of geome-
tries. All other matrices corresponding to intermediate cases
can then be simply obtained using an interpolation algorithm.
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As a result, the CPU time required for the characterization of
the discontinuities becomes negligible. To obtain the electrical
behavior of a structure over a given frequency range, one only
needs to invert a system of linear equations (once for each
frequency point). This feature can be exploited to produce
codes that are computationally very efficient.

In addition to the theoretical formulations, we have pre-
sented in this paper various results, with the aim of validating
the multimode network representation derived. All the re-
sults included indicate very good behavior both in terms of
numerical and of modal convergency.

The main application of the results obtained is to the study
of planar transmission line structures. The networks developed
can in fact be used to study planar transmission line geome-
tries by using the transverse resonance technique [9]. Single
and coupled lines can be easily studied. In addition, several
discontinuities can be easily cascaded, thereby expanding the
range of applicability of this approach to a very large variety
of structures.

APPENDIX A

To obtain the explicit expressions in (17), we first substi-
tute the expression for the vector mode functions in (14),
obtaining

€m cos mm
2 A

B

@ ’
:/d1 Mm(y)m

> n cos( ™" TN dy
nX::lncos( 5 y) cos( 5 y)dy (91)
where we have chosen A, such that
2
Ao(~yo) 7 =1 %2)
We then integrate (91) by parts, obtaining
d2
€m mm 'y Bb
— CO8 ——y =— M, (y)—F—————
V 2 b a4 ( )r(e£1)+e£2))
o~ (TN TN
';COS( 2 y) s1n( 5 y)dy (93)

where M, is the derivative of M,,, and we have imposed
the condition that M,,(y) = 0 for y = dy and y = da
(this condition will be reintroduced later in a self-consistent
fashion).

The kernel of (93) can now be summed using the relation

([1], Ch. 6.2.2)
en(E ) -

hm Z e” cos(
1 sm(lr—b?’ii)

2 cos(lbu) - cos(’—rﬁ’—/)

(94)
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so that (93) becomes
d
2 Bb
M) ——
dy 2T (e,(nl) + e,(?)>

sm(“})’ )
: I
cos("—,}‘) - cos(%)

%’n fm(y) = -

dy’ (95)

where
mr
fm(y) = COS(T

It is now convenient to use the changes of variable
cos(my'/b) = 1 and n = ki + kov, where ky and k, are
defined in (24), so that (95) becomes

1 /
Em fm(2 arccosfk; + kw]) . / Fom (V)
2 T T

1 1/’—1/

y) . (96)

7

where

—DBp? , (b ) ,
—( B n 5(2)) M, (? cos [k1 + kav/ ]) = F,.{) (98)

and k; and kg are defined in (24). Equation (97) is now
a standard Cauchy-type singular integral equation of known
solution [7], namely

em 1
Vv1- Vi-i2 [

< fm (E arccos|k; + k21/’]> dy’] .
7r

F,(v)=
99)

It is now convenient to define Q,,,(v) as in (20) so that (99)
becomes

Fnl) = [ s (O -

We next derive the expression for Y7, ., in (17). To do so, we
introduce in (16) the expression for the vector mode functions,
obtaining

Qm(v)] - (100)

Yim ,/ tn m(Y) cos( 2 ) dy (101)
where we have used for A, the expression in (92).
Let us now recall that
y
M (y) = /d M (y") dy'. (102)
1

Using (98) and (100), eq. (102) is transformed into

2k2 fem (1) @
B, \ 2 (67“ te )
' — Qm(V'))
1—(k1+k21/)

M, (% arccos[ky + kzu]) =

(103)

L=



1204

Now, using the above expression, we can rewrite (101) in the
form

Vo= ain 3(4n+4m)
| / (Co — Q)
\/1—_ 1- (kl + ko’ )

)i (104)

/ cos(n arccos[ky + kav])

\/1— kl-l-kzlj

where we have inverted the order of the integrations. At this
point, the integral in dv can be evaluated analytically, so that
we obtain the expressions given in (18).

The last analytical effort is the computation of constant
Cp.. To find its value, we use (103) and the condition that
M,,(y) = 0 for y = dq and y = ds, obtaining

o)z

/ Qm(v))
1—(h+kw)\f___

from which C,, can be found in the form shown in (22)
and (23).

For the solution of the double strip, an additional gap must
be added to the integration intervals of the relevant integrals,
thereby obtaining (26) and (27). Equation (27) is again a
standard Cauchy-type singular integral equation with one gap
inside the integration interval. The solution for this equation
can be found in ([1], Ch. 7.1.2), namely,

- [0~ f, SR e

(106)
where Py, (), X (&), and f,,, (&) are those defined in (38), (31),
and (45), respectively. Following a procedure similar to the
one used for the single strip, (26) now becomes

mm:1@£G9+&0

B
][ [Q@m(E") = Pm(&)]Rn(&)
=1 X (€1 — (k1 + k28)°

dv' (105)

e’ (107)

where R, is defined in (30), and @),, takes the form

L X(E) (&) .
= w][_l g-¢ %

At this point, it is convenient to introduce the following
changes of variables:

ug = K+ kyly

where k¥, k¥, k!, and k% are found in (36) and (37). Using
these changes of variables for both £ and &', (108) splits in the
four shown in (43) and (44). If the same change of variable
is used for the ¢ variable in (107), one can easily obtain (28)
and (29) for the coupling matrix elements.

Qm(§) (108)

(109)

da
.,/%n cos% = A Mn(y)B~
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The completion of the solution for the double strip is
obtained by finding the two unknown constants appearing in
P,, in (38). Using the same procedure as for the single strip
problem, (103) now takes the form

M'(gmwm%ﬁ%ﬁo 2M(OL%@0V2

Bb
3 _ 1
- X(ﬁ’)\/ 1= (k1 + kat")?
Now, imposing the condition M, {(y) = 0 for y = d(l)

Y= cl(Z) = dgl), and y = d§2), the following two relations
are obtamed:

o /ﬁﬁ” Pul@)=@nl®) 4o amy
TX(E)1 - (ka8

0— /2"1 Pr€) = Q) 4 12
& X1 (ka ko)

where 5;2) and {él) are those defined in (35). It is now
convenient to use the changes of variables (109) in (111)
and (112), so that after defining (41) and (42), the unknown
constants take the form shown in (39) and (40).

APPENDIX B

To obtain the final results given in (59), we substitute the
expression for the vector mode functions in (56), obtaining

1 (69) n 652))

5 el v

n=1

) dy (113)

where we have chosen A, such that

Y N

The kernel of (113) can be summed using the relation ([1],
Ch. 6.1.2)

(114)

.[2

Now, using the following change of variable, originally due
to Schwinger [10]:

cos.lbq — cos ﬂTyH . (115)

cos(% y) =C+ Scosz, (116)

(113) becomes

Im(z) = /O7T Frn(2)) l:—% log S + icos(kx) cos(kx')} dz’
k=1
(117)
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where we have changed the index of the summation from n
to k for convenience, and

fm(z) =4/ = cos[m arccos(C' + S cos )] (118)
o) = Mm [2 arccos(C + Scos )]
(-£)y/1 - (C+ Scosa)®

. B_l(egl) + 652))(—5) sinz.  (119)

(In the above expressions, C' and S are defined as in (61)
and (62).)

The set of functions cos(kz) is a complete, orthogonal set
of functions between 0 and 7, so it is possible to express any
function in the form

) = C(gm) + Z C’,gm) cos(kz)
k=1

(120)

where the coefficients can be easily obtained using the orthog-
onality property, yielding

m) _ 1 [em (m)
c§ ﬂ,/ 5 Dg (121)
2 Je
om _ 2 [em pom)
¢ —\/5 Dk (122)

and where D(()m) and D,(cm) are those defined in (60). Compar-
ing (117) and (120), we then obtain

P €m (m)
/ Fn (x ) dz =105 gS 7”/ Dy
/0 Fo(2') cos(kz') dz’ = k;‘/—g—D,(cm). (124)

The function F,,(z) can now be expressed as a linear
combination of the same set of functions, namely cos(kx),
obtaining

(123)

=3 E{™ cos(kz). (125)
k=0
Using again the orthogonality property, we find
EM == / Fo(z) dz (126)
E’(m) = — / m(x) cos (kz) dz . 127

From 2123) and (124), we can now write the general expression

for Ekm), namely,
2
my _ (L1 -2 (m)
- (1) (o s
m _ (2, [em o
E\ (?) k,/-Q—D,c (129)
So that F,,(z) is found to be
2
_(1 -2 (m)
w= (z) (s )5 %
+Z( ) ,/em D™ cos(kz). (130)
=1

A
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We next derive the expression for Z,, ,, in (59). To do so, we
introduce in (58) the expression for the vector mode function,

obtaining
3 y) dy

where we have used for A, the expression in (114). Using
(119) and (130), eq. (131) takes the form shown in (59),
with the coefficients D,(cm) defined as in (60).

For the double gap, the only difference is that in (113) and
(131), there is an additional gap in the integrals. To analytically
solve the resulting equations, it is convenient to define the
following auxiliary functions:

cos (131)

[ M) vy ¢ (450, dP)
o (y) = {0; Vy € [dgl) d%z)] (132)
Im(¥); Yy ¢[ (1) d(z)]
Hmlv) = 133
W {fm(y)+gm(y); Vy € [d§1)7dgz)] (133)

where fn,(y) is defined in (118), and g,,(y) is an unknown
function. A similar procedure was also used in ([1], Ch. 7.1.2),
but with a different definition of the auxiliary functions.
On using (132) and (133), we remove the gap from the
integrals in (113) and (116), yielding
d(z)

Hin(y) = /d (12) & (y')B™! (69) + 652))
3L on(E () 39

5 [ e

Following a procedure similar to the one previously outlined
for the single aperture, (134) is now transformed into

Z 2kI{™ cos(kz) = / (z")2 Z I cos(lz’) cos(lx) dz’
k=1

z1 =1

(135)

T2

(136)

where the coefficient I, ,gm) is found in (67), and z1, z2 are
those defined in (85) and (86), respectively.

Equation (136) can be reduced to a Cauchy-type singular
integral equation for the unknown function g, (). Its solution
was reported in Appendix A.

Once g, (x) is found, the generic expression for the cou-
pling matrix elements in (65) can be obtained in the form
shown in Section V.
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